KRSN MAT2010 - Calculus I

Equivalent courses from Kansas public institutions for which core outcomes apply:

INSTITUTION	COURSE ID	COURSE TITLE	CREDIT HOURS
Allen CC	MAT 123	Calculus with Analytic Geometry I	5
Barton CC	MATH 1832	Analytic Geometry and Calculus I	5
Butler CC	MA 151	Calculus I with Analytic Geometry	5
Cloud County CC	MA 120	Analytic Geometry and Calculus I	5
Coffeyville CC	MATH 115	Calculus with Analytic Geometry I	5
Colby CC	MA 220	Analytic Geometry and Calculus I	5
Cowley CC	MTH 4435	Calculus I	5
Dodge City CC	MATH 120	Analytic Geometry and Calculus I	5
Fort Scott CC	MAT 1015	Calculus I with Analytic Geometry I	5
Garden City CC	MATH 122	Calculus and Analytic Geometry I	5
Highland CC	MAT 106	Calculus I	5
Hutchinson CC	MA 111	Analytical Geometry and Calculus I	5
Independence CC	MAT 1055	Analytic Geometry and Calculus I	5
JCCC	MATH 241	Calculus I	5
КСКСС	MATH 0122	Calculus and Analytic Geometry I	5
Labette CC	MATH 130	Calculus I	5
Neosho County CC	MATH 150	Analytic Geometry and Calculus I	5
Pratt CC	MTH 191	Analytic Geometry and Calculus I	5
Seward County CC	MA 2605	Analytic Geometry and Calculus I	5
FHTC	Not Offered	Not Offered	
Manhattan Tech	Not Offered	Not Offered	
NCK Tech	Not Offered	Not Offered	
NWKTC	MATH 240	Analytic Geometry and Calculus I	5
SATC	MAT 160	Analytical Geometry and Calculus I	5
WSU Tech	MTH 125	Calculus I	5
ESU	MA 161	Calculus I	5
FHSU	MATH 234	Calculus I	5
KSU	MATH 220	Analytical Geometry and Calculus I	4
KU	MATH 125	Calculus I	4
PSU	MATH 150	Calculus I	5
Washburn	MA 151	Calculus and Analytic Geometry	5
WSU	MATH 242	Calculus I	5

For specific Institutional Transfer Articulation information, visit: <u>kansasregents.org/institutional-transfer-information</u>.

Calculus I - KRSN MAT2010 CORE OUTCOMES

Course Effective Date: Fall 2013 Outcome Approval Date: Fall 2017 Next Outcome Review Date: Fall 2022

Upon completion of this course, students will be able to:

1. Using Limits

- a. Evaluation of Limits
 - i. Use the definition of a limit to verify a value for the limit of a function
 - ii. Evaluate the limit of a function at a point both algebraically and graphically
 - iii. Evaluate the limit of a function at infinity both algebraically and graphically
- b. Use of Limits
 - i. Use the limit to determine the continuity of a function
 - ii. Apply the Intermediate-Value Theorem
 - iii. Use the limit to determine differentiability of a function
- c. Limiting Process
 - i. Use the limiting process to find the derivative of a function
- 2. Finding Derivatives
 - a. Find derivatives involving powers, exponents, and sums
 - b. Find derivatives involving products and quotients
 - c. Find derivatives involving the chain rule
 - d. Find derivatives involving exponential, logarithmic, and trigonometric functions
 - e. Find derivatives involving implicit differentiation
- 3. Using Derivatives
 - a. Curve Sketching
 - i. Use the first derivative to find critical points
 - ii. Apply the Mean-Value Theorem for derivatives
 - iii. Determine the behavior of a function using the first derivative
 - iv. Use the second derivative to find inflection points
 - v. Determine the concavity of a function using the second derivative
 - vi. Sketch the graph of the function using information gathered from the first and second derivatives
 - vii. Interpret graphs of functions
 - b. Applications of Derivatives
 - i. Use the derivative to find velocity, acceleration, and other rates of change
 - ii. Use the derivative to find the equation of a line tangent to a curve at a given point
 - iii. Use optimization techniques in areas such as economics, the life sciences, the physical sciences, and geometry
 - iv. Solve related rates problems
 - v. Use Newton's Method
 - vi. Use differentials to estimate change
- 4. Finding Integrals
 - a. Find area using Riemann sums and integrals
 - b. Express the limit of a Riemann sum as a definite integral
 - c. Evaluate the definite integral using geometry

- d. Integrate algebraic, exponential, and trigonometric functions
- e. Evaluate definite integrals using the Fundamental Theorem of Calculus
- f. Apply the Mean-Value Theorem for integrals
- g. Integrate indefinite integrals
- h. Integrate using substitution
- i. Approximate integrals using Simpson's Rule and the Trapezoidal Rule