

Kansas Board of Regents
 Precollege Curriculum Courses Approved for University Admissions

Kansas Board of Regents Precollege Curriculum Courses Proposed for University Admissions

 Adopted April 6, 2011The precollege curriculum is designed to prepare high school students for university-level work. The list of courses fulfilling the precollege curriculum has been recommended by the Kansas State Department of Education and approved by the chief executive officer of the board of regents or the chief executive officer's designee. Requirements for the precollege curriculum are found in K.A.R. 88-29-11 and 88-29a-11.

MATHEMATICS Course Title		
		Algebra I courses include the study of properties and operations of the real number system; evaluating rational algebraic expressions; solving and graphing first degree equations and inequalities; translating word problems into equations; operations with and factoring of polynomials; and solving simple quadratic equations.
Algebra I		The first part in a multi-part sequence of Algebra I. This course generally covers the same topics as the first semester of Algebra I, including the study of properties of rational numbers (i.e., number theory), ratio, proportion, and estimation, exponents and radicals, the rectangular coordinate system, sets and logic, formulas, and solving first degree equations and inequalities.
Algebra I-Part 1	02053	

Integrated Math—multi-year equivalent	02061	Integrated Math courses emphasize the teaching of mathematics as problem solving, communication, and reasoning, and emphasize the connections among mathematical topics and between mathematics and other disciplines. The multi-period sequence of Integrated Math replaces the traditional Algebra I, Geometry, Algebra II sequence of courses, and usually covers the following topics during a three- or four-year sequence: algebra, functions, geometry from both a synthetic and an algebraic perspective, trigonometry, statistics and probability, discrete mathematics, the conceptual underpinnings of calculus, and mathematical structure.
Algebra-Other	02069	Other Algebra courses. (Only concurrent enrollment College Algebra courses will count toward Qualified Admissions.)
Geometry	02072	Geometry courses, emphasizing an abstract, formal approach to the study of geometry, typically include topics such as properties of plane and solid figures; deductive methods of reasoning and use of logic; geometry as an axiomatic system including the study of postulates, theorems, and formal proofs; concepts of congruence, similarity, parallelism, perpendicularity, and proportion; and rules of angle measurement in triangles.
Analytic Geometry	02073	Analytic Geometry courses include the study of the nature and intersection of lines and planes in space, including vectors, the polar coordinate system, equations and graphs of conic sections, rotations and transformations, and parametric equations.
Number Theory	02101	Number Theory courses review the properties and uses of integers and prime numbers, and extend this information to congruences and divisibility.
Discrete Mathematics	02102	Discrete Mathematics courses include the study of topics such as number theory, discrete probability, set theory, symbolic logic, Boolean algebra, combinatorics, recursion, basic algebraic structures and graph theory.
Trigonometry	02103	Trigonometry courses prepare students for eventual work in calculus and typically include the following topics: trigonometric and circular functions; their inverses and graphs; relations among the parts of a triangle; trigonometric identities and equations; solutions of right and oblique triangles; and complex numbers.
Math Analysis	02104	Math Analysis courses include the study of polynomial, logarithmic, exponential, and rational functions and their graphs; vectors; set theory; Boolean algebra and symbolic logic; mathematical induction; matrix algebra; sequences and series; and limits and continuity. They may also include some study of trigonometry and/or pre-calculus topics.

$\left.\begin{array}{|l|l|l|}\hline & & \begin{array}{l}\text { Covering topics of both Trigonometry and Math Analysis, these courses } \\ \text { prepare students for eventual work in calculus. Topics typically include the } \\ \text { study of right trigonometric and circular functions, inverses, and graphs; } \\ \text { trigonometric identities and equations; solutions of right and oblique } \\ \text { triangles; complex numbers; numerical tables; polynomial, logarithmic, } \\ \text { exponential, and rational functions and their graphs; vectors; set theory; } \\ \text { Boolean algebra and symbolic logic; mathematical induction; matrix } \\ \text { algebra; sequences and series; and limits and continuity. }\end{array} \\ \text { Trigonometry/Math Analysis } & & 02105 \\ \hline \text { Trigonometry/Algebra courses combine trigonometry and advanced } \\ \text { algebra topics, and are usually intended for students who have attained } \\ \text { Algebra I and Geometry objectives. Topics typically include right } \\ \text { trigonometric and circular functions, inverses, and graphs; trigonometric } \\ \text { identities and equations; solutions of right and oblique triangles; complex } \\ \text { numbers; numerical tables; field properties and theorems; set theory; } \\ \text { operations with rational and irrational expressions; factoring of rational } \\ \text { expressions; in-depth study of linear equations and inequalities; quadratic } \\ \text { equations; solving systems of linear and quadratic equations; graphing of } \\ \text { constant, linear, and quadratic equations; and properties of higher degree } \\ \text { equations. }\end{array}\right\}$

		Pre-Calculus courses combine the study of Trigonometry, Elementary Functions, Analytic Geometry, and Math Analysis topics as preparation for calculus. Topics typically include the study of complex numbers; polynomial, logarithmic, exponential, rational, right trigonometric, and circular functions, and their relations, inverses and graphs; trigonometric identities and equations; solutions of right and oblique triangles; vectors; the polar coordinate system; conic sections; Boolean algebra and symbolic logic; mathematical induction; matrix algebra; sequences and series; and limits and continuity.
Pre-Calculus		02110
Linear Algebra	02111	Linear Algebra courses include a study of matrices, vectors, tensors, and linear transformations and are typically intended for students who have attained pre-calculus objectives.
Linear Programming	Linear Programming courses include a study of mathematical modeling and the simplex method to solve linear inequalities and are typically intended for students who have attained pre-calculus objectives.	
Abstract Algebra	02112	Abstract Algebra courses include a study of the properties of the number system from an abstract perspective, including such topics as number fields (i.e., rational, real, and complex numbers), integral domains, rings, groups, polynomials, and the fundamental theorem of algebra. Abstract Algebra is typically geared towards students who have attained pre- calculus objectives.
Cafferential Calculus		02113

$\left.\begin{array}{|l|l|l|}\hline & & \begin{array}{l}\text { Following the College Board's suggested curriculum designed to parallel } \\ \text { college-level calculus courses, AP Calculus AB provides students with an } \\ \text { understanding of the concepts of calculus and experience with its methods } \\ \text { and applications. These courses introduce calculus and include the } \\ \text { following topics: functions, graphs, limits, and continuity; differential } \\ \text { calculus (including definition, application, and computation of the } \\ \text { derivative; derivative at a point; derivative as a function; and second } \\ \text { derivatives); and integral calculus (including definite integrals and } \\ \text { antidifferentiation). }\end{array} \\ \text { AP Calculus AB } & & 02124 \\ \hline \text { AP Calculus BC } & & \begin{array}{l}\text { Following the College Board's suggested curriculum designed to parallel } \\ \text { college-level calculus courses, AP Calculus BC courses provide students } \\ \text { with an understanding of the concepts of calculus and experience with its } \\ \text { methods and applications. These courses cover all of the calculus topics in } \\ \text { AP Calculus AB as well as the following topics: parametric, polar, and }\end{array} \\ \hline \text { vector functions; applications of integrals; and polynomial approximations } \\ \text { and series, including series of constants and Taylor series. See SCED Code } \\ \text { O2124 for more details. }\end{array}\right\}$

IB Mathematics and Computing-SL	02133	IB Mathematics and Computing-SL courses prepare students to take the International Baccalaureate Mathematics and Computing exam at the Subsidiary level. Designed to give students a working knowledge of a high level programming language and sound mathematical training, course topics include operations and properties of number sets; trigonometric functions, equations, and graphs; algebra and coordinate geometry, including simultaneous linear equations, binomial theorem, and polynomial and quadratic functions and equations; calculus; vectors and matrices; and numerical analysis. The courses also contain components on computer problem solving and programming; topics regarding computer hardware, software, modes of operation, and data types and structures.
IB Further Mathematics-SL	02134	IB Further Mathematics-SL courses prepare students to take the International Baccalaureate Further Mathematics at the Subsidiary level. Designed to advance students knowledge of IB mathematics-HL, course topics include geometry; statistics and probability; sets, relations and groups; series and differential equations; and discrete mathematics.
Particular Topics in Analytic Mathematics	02141	These courses examine particular topics in analytic mathematics (such as mathematical proofs and structures or numerical analysis), not otherwise described above.
Business Math with Algebra	02155	Business Math with Algebra courses teach and have students apply algebra concepts to a variety of business and financial situations. Applications usually include income, insurance, credit, banking, taxation, stocks and bonds, and finance.
Computer Math with Algebra	02156	Intended for students who have attained the objectives of Algebra I, Computer Math—Algebra I level courses include a study of computer systems and programming, and use the computer to solve math problems.
Probability and Statistics	02201	Probability and Statistics courses introduce the study of likely events and the analysis, interpretation, and presentation of quantitative data. Course topics generally include basic probability and statistics: discrete probability theory, odds and probabilities, probability trees, populations and samples, frequency tables, measures of central tendency, and presentation of data (including graphs). Course topics may also include normal distribution and measures of variability.

		Probability and Statistics courses focus on descriptive statistics, with an introduction to inferential statistics. Topics typically include event probability, normal probability distribution, collection and description of data, frequency tables and graphs, measures of central tendency and variability, random variables, and random sampling. Course topics may also include covariance and correlation, central limit theorem, confidence intervals, and hypothesis testing.
Inferential Probability and Statistics	02202	Following the College Board's suggested curriculum designed to parallel college-level statistics courses, AP Statistics courses introduce students to the major concepts and tools for collecting, analyzing, and drawing conclusions from data. Students are exposed to four broad conceptual themes: exploring data, sampling and experimentation, anticipating patterns, and statistical inference.
AP Statistics	02203	These courses examine particular topics in Probability and Statistics, such as regression or hierarchical linear modeling, rather than provide a general overview.
Particular Topics in Probability and Statistics	02204	Probability and Statistics-Independent Study courses, often conducted with instructors as mentors, enable students to explore mathematics topics of interest. These courses may be offered in conjunction with other rigorous math courses, or may serve as an opportunity to explore a topic of special interest. They may also serve as an opportunity to study for AP exams if the school does not offer specific courses for that endeavor.
Probability and Statistics-Independent Study		

